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i. Beatty Sequences

Beatty sequences were first introduced by the physicist John Willi-
am Strutt (Lord Rayleigh, on the left) in 1894. The name, however,
is with respect to Samuel Beatty who popularized the topic by a
problem he posed in 1926 in the American Mathematical Monthly.



Beatty Sequences

Denote by ⌊x⌋ the largest integer ≤ x .

Given a positive real number α, the set

B(α) = {⌊nα⌋ : n ∈ N}

is called the associated Beatty sequence. For example,

B(1) = {1, 2, . . .} = N,

B(
√

2) = {⌊1.41 . . .⌋ = 1, ⌊2 · 1.41 . . .⌋ = 2, ⌊3 · 1.41 . . .⌋ = 4, . . .}

If α is rational, then B(α) is a union of arithmetic progressions.

Surprisingly, if α is irrational and β is defined by 1

α + 1

β = 1, then

B(α) ∪ B(β) = N is a disjoint union.
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Examples

The partition of N with

α =
1

2
(
√

5 + 1) :

B(22

7
) = {3, 6, 9, 12, 15, 18,22, 25, 28, 31, 34, 37, 40,44, 47, 50, . . .},

B(355

113
) = {3, 6, 9, 12, 15, 18,21, 25, 28, 31, 34, 37, 40,43, 47, 50, . . .},

B(π) = {3, 6, 9, 12, 15, 18,21, 25, 28, 31, 34, 37, 40,43, 47, 50, . . .}.

Where do the latter two differ?
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Geometry

The straight line

Y =
1

2
(
√

5 + 1)X

does not contain any ratio-
nal points; its intersections with
vertical lines are

1, 3, 4, 6, 8, . . . ,

that are the elements of the Be-
atty sequence B(1

2
(
√

5 + 1)).

The Sturmian word associated with 1

2
(
√

5 + 1) is the infinite
aperiodic sequence 010010100100 . . .
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ii. Prime Numbers in a Beatty Sequence

The Ulam spiral shows the sequence of positive integers in a spiral,
the primes colored in white the others in black. The picture reminds
us of a galaxy in outerspace, indicating the random appearance of
primes. What can be said about the intersection of the set of prime
numbers and a Beatty sequence?



Primes in Arithmetic Progression

In 1837-39 Peter Gustav Lejeune Dirichlet proved that every prime

residue class a mod q contains infinitely many primes.

This may be used to find primes in a Beatty sequence B(α)
whenever α is rational, e.g.

B(22

7
) = {3, 6, 9, 12, 15, 18, 22} + 22N0.
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Prime Number Theorems

Dirichlet proved for the number π(N; a mod q) of primes p ≤ x in
the arithmetic progression a + qZ satisfying gcd(a, q) = 1 that

π(N; a mod q) =
1

ϕ(q)
π(N) + error term,

where ϕ(q) counts the number of a ≤ q being coprime with q. This
shows that the primes are equidistributed in the prime residue
classes!

The celebrated prime number theorem from 1896 (proved by
Jacques Hadamard and Charles de la Vallée Poussin) states

π(N) =
N

log N
+ error term

where the error term depends on the zero-free region of the
Riemann zeta-function (Riemann hypothesis)...
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Exponential Sums in Primes

In the process of proving the
ternary Goldbach conjecture for
sufficiently large odd integers
Ivan Matveevich Vinogradov
obtained in 1937/38, for α, a

and q satisfying

∣

∣

∣

∣

α− a

q

∣

∣

∣

∣

<
1

q2
,

the estimate

∑

p≤N

exp(2πimαp) ≪ N1+ǫ

(

1

N1/2
+

q

N
+

m

q
+

m4

q2

)1/2

= o(π(N)),

where the summation is over all primes p ≤ N.



The Primes are Uniformly Distributed Modulo One

Vinogradov’s estimate implies that the sequence of numbers αp

with fixed irrational α is uniformly distributed modulo one, which
means that in every interval [a, b) ⊂ [0, 1) the proportion of
fractional parts {αp} is equal to b − a (that is the length of the
interval).

This follows from a classical cri-
terion of Hermann Weyl from
1913/14: A sequence of real

numbers xn is uniformly distri-

buted modulo one if and only if

for every integer m 6= 0

lim
N→∞

1

N

∑

n≤N

exp(2πimxn) = 0.
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Another Easier Example

The sequence of numbers αn with n = 1, 2, . . . is uniformly
distributed modulo one if and only if α is irrational; this was first
proved by Piers Bohl in 1909 (improving an old result of Leopold
Kronecker).

The idea behind Weyl’s criteri-
on: the map

x 7→ exp(2πimx)

transforms the unit interval to
the unit circle; the values of a
uniformly distributed sequence
add up to something small for
all integers m 6= 0.
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The Prime Number Theorem for Beatty Sequences

It follows from uniform distribution modulo one that the number
πB(α)(x) of prime numbers p ≤ x in a Beatty sequence B(α)
satisfies

lim
x→∞

πB(α)(x) ·
α log x

x
= 1.

In particular, there are infinitely many primes in a Beatty sequence;
more precisely:

πB(α)(x) =
1

α
π(x) + error term;

Already Vinogradov provided an error term estimate.
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iii. The Least Prime in a Beatty Sequence

4, 21, 38, 55, 72, 89, 106, 123, 140, . . . ∈ 4 + 17N0

The least prime in the arithmetic progression 1+ 5227N0 is 397 253
and appears as 1 + 76 · 5227 (as computed by Will Jagy in
MathOverflow, Nov 14, 2011).

The least prime number in the Beatty sequence B(exp(π
√

163)) is
3 938 061 189 611 531 159 which appears with n = 15.



The Least Prime in an Arithmetic Progression

In 1944 Yuri Linnik showed that
for every sufficiently large q and

coprime a, there exists a con-

stant expo such that the least

prime p in the residue class

a mod q satisfies

p ≤ const · qexpo

with some absolute constant

const.

The so far best bound for the appearing exponent is expo ≤ 5 due
to Triantafyllos Xylouris (2011).
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In the Best of All Worlds

The question dates back to Savardaman Chowla (on the left) who
conjectured in 1934 that one may even take expo = 1 + ǫ.

In 1937 Pál Turán proved that this is true i) for almost all q and,
ii) in general under the assumption of the generalized Riemann
hypothesis.



Specialities about the Least Beatty Prime

What to expect for the least prime in a Beatty sequence?

For 2 ≤ m ∈ N let

αm = 4 +

√
2

m
.

Then

⌊nαm⌋ = 4n for n = 1, 2, . . . ,M :=

⌊

m√
2

⌋

.

Hence, these numbers are divisble by 4 so the least prime p in
B(αm) does not appear among the first M elements.

There cannot be any bound similar to the one in the rational case!
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A Theorem of Robert C. Vaughan (1977)

Let α, β ∈ R and suppose that
∣

∣

∣

∣

α− a

q

∣

∣

∣

∣

<
1

q2

for coprime integers a and q. Define

χ(θ) =

{

1 if − δ ≤ {θ} := θ − ⌊θ⌋ < δ,

0 otherwise.

Then, for any fixed δ ∈ (0, 1

2
),

∑

n≤N

Λ(n)χ(nα− β) = 2δ
∑

n≤N

Λ(n) + O

(

δ
2

5 N
4

5

(

Nq

δ

)ǫ

+

+

(

log
Nq

δ

)8
(

N

q
1

2

+ N
3

4 + (δNq)
1

2

))

.



Our Application

Here Λ(n) counts prime powers n = pk with weight log p; hence the
prime number theorem gives

∑

n≤N

Λ(n) ∼
∑

p≤N

1 · log N = π(N) · log N ∼ N.

Thus, we get a similar formula for primes only!

Combining this and Vaughan’s formula with δ = α−1 we aim at
finding

πB(α)(N) · log N =
1

α
N ± error term > 0.

For this purpose we just need

1

α
N > ∓error term.
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Continued Fractions

Choosing N ≈ q1+ǫ finally leads to the equivalent inequality

1 > constant · α 1

2
+ǫq−ǫ,

which is fulfilled for sufficiently large q. If α is irrational, there exist
indeed infinitely many reduced fractions a

q
with

∣

∣

∣

∣

α− a

q

∣

∣

∣

∣

<
1

q2
.

For example, one may take the convergents pn

qn

to the continued
fraction expansion of α which are bounded below by the Fibonacci
numbers:

qn ≥ Fn+1 ≈ 1√
5

(√
5 + 1

2

)n+1

.
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Our Result

This implies that

there exists a positive integer n such that for every irrational α > 1
the least prime p ∈ B(α) satisfies

p ≤ q1+ǫ
n ,

where qn denotes the denominator to the nth convergent of the
continued fraction expansion of α.

This is quite similar to Linnik’s classical theorem!
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Further Questions for Future Research

• Try to improve the estimate p ≤ q1+ǫ
n . What can be said under

assumption of the generalized Riemann hypothesis?

• What about the error term in the asymptotic formula for the
number of primes in a Beatty sequence:

∣

∣πB(α)(N) − 1

απ(N)
∣

∣ < ???

Can you improve on Vinogradov’s bounds?

• Is the (ternary) Goldbach conjecture true for primes from a
Beatty sequence?

Formulate your own statement about primes in a Beatty sequence
that your neighbour cannot answer! And prove it!!
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¡ muchas gracias !


