On the Least Prime Number in a Beatty Sequence

Jörn Steuding (Würzburg)
-- joint work with Marc Technau -Salamanca, 31 July 2015

i. Beatty Sequences
ii. Prime Numbers in a Beatty Sequence
iii. The Least Prime in a Beatty Sequence

i. Beatty Sequences

Beatty sequences were first introduced by the physicist John William Strutt (Lord Rayleigh, on the left) in 1894. The name, however, is with respect to Samuel Beatty who popularized the topic by a problem he posed in 1926 in the American Mathematical Monthly.

Beatty Sequences

Denote by $\lfloor x\rfloor$ the largest integer $\leq x$.
Given a positive real number α, the set

$$
\mathcal{B}(\alpha)=\{\lfloor n \alpha\rfloor: n \in \mathbb{N}\}
$$

is called the associated Beatty sequence. For example,

$$
\begin{aligned}
& \mathcal{B}(1)=\{1,2, \ldots\}=\mathbb{N} \\
& \mathcal{B}(\sqrt{2})=\{\lfloor 1.41 \ldots\rfloor=1,\lfloor 2 \cdot 1.41 \ldots\rfloor=2,\lfloor 3 \cdot 1.41 \ldots\rfloor=4, \ldots\} \\
& \text { If } \alpha \text { is rational, then } \mathcal{B}(\alpha) \text { is a union of arithmetic progressions. }
\end{aligned}
$$

Surprisingly, if α is irrational and β is defined by $\frac{1}{\alpha}+\frac{1}{\beta}=1$, then $\mathcal{B}(\alpha) \cup \mathcal{B}(\beta)=\mathbb{N}$ is a disjoint union.

Beatty Sequences

Denote by $\lfloor x\rfloor$ the largest integer $\leq x$.
Given a positive real number α, the set

$$
\mathcal{B}(\alpha)=\{\lfloor n \alpha\rfloor: n \in \mathbb{N}\}
$$

is called the associated Beatty sequence. For example,

$$
\begin{aligned}
\mathcal{B}(1) & =\{1,2, \ldots\}=\mathbb{N} \\
\mathcal{B}(\sqrt{2}) & =\{\lfloor 1.41 \ldots\rfloor=1,\lfloor 2 \cdot 1.41 \ldots\rfloor=2,\lfloor 3 \cdot 1.41 \ldots\rfloor=4, \ldots\}
\end{aligned}
$$

If α is rational, then $\mathcal{B}(\alpha)$ is a union of arithmetic progressions.
Surprisingly, if α is irrational and β is defined by $\frac{1}{\alpha}+\frac{1}{\beta}=1$, then $\mathcal{B}(\alpha) \cup \mathcal{B}(\beta)=\mathbb{N}$ is a disjoint union.

Examples

The partition of \mathbb{N} with

$$
\alpha=\frac{1}{2}(\sqrt{5}+1):
$$

| 1 | $\left\\|\\| \frac{1017}{2}\right.$ | 3 | 4 | | 6 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8 | 9 | $\left\\|\\|_{10}\right.$ | 11 | 12 | | 14 | 1 |
| \|16' | 16 | 17 | $1\|1\| 118$ | 19 | \|fllil | 21 | 1 |
| | | 24 | | \|pulut | 27 | [1ए9 | 8 |
| 19 | 30 | 维 | 32 | 33 | \|l|114 | | 35 |
| | 57 | | $1\|1\| 19$ | 4. | | | 4 |
| $43 \\|$ | \|l|l4 4 | 49 | 46 | $\\|(144 \\|$ | | $11\|\mid 149$ | TICV |

Examples

The partition of \mathbb{N} with

$$
\alpha=\frac{1}{2}(\sqrt{5}+1):
$$

| 1 | $1 \mid 1 / 1{ }^{101}$ | 3 | 4 | \| \mid (19\% | 6 | \|1/|147 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | | $1 \mid$ | 11 | 12 | $1111 / 13$ | 14 |
| | 16 | 17 | $1\|1\| 118$ | 19 | \|l|l 12 | 21 |
| | $21 \mid 143$ | 24 | 25 | 26 | 27 | ${ }_{25}$ |
| | 1930 | I\|f(3i] | 32 | 33 | \|l|114 | 35 |
| (101/36 | [17 37 | 38 | $1\|1\| 19$ | 46 | \|n|mint | 4 |
| | ${ }^{4}\| \| \mid 146$ | | 46 | $\mid \overrightarrow{\|l\| l\|l\|}$ | 49 | $1\|\mid(414$ |

$$
\begin{aligned}
\mathrm{B}\left(\frac{22}{7}\right) & =\{3,6,9,12,15,18,22,25,28,31,34,37,40,44,47,50, \ldots\} \\
\mathrm{B}\left(\frac{355}{113}\right) & =\{3,6,9,12,15,18,21,25,28,31,34,37,40,43,47,50, \ldots\} \\
\mathrm{B}(\pi) & =\{3,6,9,12,15,18,21,25,28,31,34,37,40,43,47,50, \ldots\} .
\end{aligned}
$$

Where do the latter two differ?

The straight line

$$
Y=\frac{1}{2}(\sqrt{5}+1) X
$$

does not contain any rational points; its intersections with vertical lines are

$$
1,3,4,6,8, \ldots,
$$

that are the elements of the Beatty sequence $\mathcal{B}\left(\frac{1}{2}(\sqrt{5}+1)\right)$.

The straight line

$$
Y=\frac{1}{2}(\sqrt{5}+1) X
$$

does not contain any rational points; its intersections with vertical lines are

$$
1,3,4,6,8, \ldots
$$

that are the elements of the Beatty sequence $\mathcal{B}\left(\frac{1}{2}(\sqrt{5}+1)\right)$.

The Sturmian word associated with $\frac{1}{2}(\sqrt{5}+1)$ is the infinite aperiodic sequence $010010100100 \ldots$

ii. Prime Numbers in a Beatty Sequence

The Ulam spiral shows the sequence of positive integers in a spiral, the primes colored in white the others in black. The picture reminds us of a galaxy in outerspace, indicating the random appearance of primes. What can be said about the intersection of the set of prime numbers and a Beatty sequence?

Primes in Arithmetic Progression

In 1837-39 Peter Gustav Lejeune Dirichlet proved that every prime residue class a mod q contains infinitely many primes.

This may be used to find primes in a Beatty sequence $\mathcal{B}(\alpha)$ whenever α is rational, e.g.

$$
\mathrm{B}\left(\frac{22}{7}\right)=\{3,6,9,12,15,18,22\}
$$

Primes in Arithmetic Progression

In 1837-39 Peter Gustav Lejeune Dirichlet proved that every prime residue class a mod q contains infinitely many primes.

This may be used to find primes in a Beatty sequence $\mathcal{B}(\alpha)$ whenever α is rational, e.g.

$$
\mathrm{B}\left(\frac{22}{7}\right)=\{3,6,9,12,15,18,22\}+22 \mathbb{N}_{0} .
$$

Prime Number Theorems

Dirichlet proved for the number $\pi(N ; a \bmod q)$ of primes $p \leq x$ in the arithmetic progression $a+q \mathbb{Z}$ satisfying $\operatorname{gcd}(a, q)=1$ that

$$
\pi(N ; a \bmod q)=\frac{1}{\varphi(q)} \pi(N)+\text { error term }
$$

where $\varphi(q)$ counts the number of $a \leq q$ being coprime with q. This shows that the primes are equidistributed in the prime residue classes!

The celebrated prime number theorem from 1896 (proved by Jacques Hadamard and Charles de la Vallée Poussin) states

where the error term depends on the zero-free region of the

Prime Number Theorems

Dirichlet proved for the number $\pi(N ; \operatorname{arod} q)$ of primes $p \leq x$ in the arithmetic progression $a+q \mathbb{Z}$ satisfying $\operatorname{gcd}(a, q)=1$ that

$$
\pi(N ; a \bmod q)=\frac{1}{\varphi(q)} \pi(N)+\text { error term }
$$

where $\varphi(q)$ counts the number of $a \leq q$ being coprime with q. This shows that the primes are equidistributed in the prime residue classes!

The celebrated prime number theorem from 1896 (proved by Jacques Hadamard and Charles de la Vallée Poussin) states

$$
\pi(N)=\frac{N}{\log N}+\text { error term }
$$

where the error term depends on the zero-free region of the Riemann zeta-function (Riemann hypothesis)

Exponential Sums in Primes

In the process of proving the ternary Goldbach conjecture for sufficiently large odd integers Ivan Matveevich Vinogradov obtained in 1937/38, for α, a and q satisfying

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}}
$$

the estimate

$$
\sum_{p \leq N} \exp (2 \pi i m \alpha p) \ll N^{1+\epsilon}\left(\frac{1}{N^{1 / 2}}+\frac{q}{N}+\frac{m}{q}+\frac{m^{4}}{q^{2}}\right)^{1 / 2}=o(\pi(N))
$$

where the summation is over all primes $p \leq N$.

The Primes are Uniformly Distributed Modulo One

Vinogradov's estimate implies that the sequence of numbers αp with fixed irrational α is uniformly distributed modulo one, which means that in every interval $[a, b) \subset[0,1)$ the proportion of fractional parts $\{\alpha p\}$ is equal to $b-a$ (that is the length of the interval).

This follows from a classical criterion of Hermann Weyl from 1913/14: A sequence of real numbers x_{n} is uniformly distributed modulo one if and only if for every integer $m \neq 0$

The Primes are Uniformly Distributed Modulo One

Vinogradov's estimate implies that the sequence of numbers αp with fixed irrational α is uniformly distributed modulo one, which means that in every interval $[a, b) \subset[0,1)$ the proportion of fractional parts $\{\alpha p\}$ is equal to $b-a$ (that is the length of the interval).

This follows from a classical criterion of Hermann Weyl from 1913/14: A sequence of real numbers x_{n} is uniformly distributed modulo one if and only if for every integer $m \neq 0$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \exp \left(2 \pi i m x_{n}\right)=0
$$

Another Easier Example

The sequence of numbers αn with $n=1,2, \ldots$ is uniformly distributed modulo one if and only if α is irrational; this was first proved by Piers Bohl in 1909 (improving an old result of Leopold Kronecker).
The idea behind Weyl's criteri-
on: the map

$$
x \mapsto \exp (2 \pi i m x)
$$

transforms the unit interval to
the unit circle; the values of a
uniformly distributed sequence
add up to something small for
all integers $m \neq 0$.

Another Easier Example

The sequence of numbers αn with $n=1,2, \ldots$ is uniformly distributed modulo one if and only if α is irrational; this was first proved by Piers Bohl in 1909 (improving an old result of Leopold Kronecker).

The idea behind Weyl's criterion: the map

$$
x \mapsto \exp (2 \pi i m x)
$$

transforms the unit interval to the unit circle; the values of a uniformly distributed sequence add up to something small for all integers $m \neq 0$.

The Prime Number Theorem for Beatty Sequences

It follows from uniform distribution modulo one that the number $\pi_{\mathcal{B}(\alpha)}(x)$ of prime numbers $p \leq x$ in a Beatty sequence $\mathcal{B}(\alpha)$ satisfies

$$
\lim _{x \rightarrow \infty} \pi_{\mathcal{B}(\alpha)}(x) \cdot \frac{\alpha \log x}{x}=1
$$

In particular, there are infinitely many primes in a Beatty sequence;
more precisely:

Already Vinogradov provided an error term estimate.

The Prime Number Theorem for Beatty Sequences

It follows from uniform distribution modulo one that the number $\pi_{\mathcal{B}(\alpha)}(x)$ of prime numbers $p \leq x$ in a Beatty sequence $\mathcal{B}(\alpha)$ satisfies

$$
\lim _{x \rightarrow \infty} \pi_{\mathcal{B}(\alpha)}(x) \cdot \frac{\alpha \log x}{x}=1
$$

In particular, there are infinitely many primes in a Beatty sequence; more precisely:

$$
\pi_{\mathcal{B}(\alpha)}(x)=\frac{1}{\alpha} \pi(x)+\text { error term; }
$$

Already Vinogradov provided an error term estimate.
iii. The Least Prime in a Beatty Sequence

$$
4,21,38,55,72,89,106,123,140, \ldots \in 4+17 \mathbb{N}_{0}
$$

The least prime in the arithmetic progression $1+5227 \mathbb{N}_{0}$ is 397253 and appears as $1+76 \cdot 5227$ (as computed by Will Jagy in MathOverflow, Nov 14, 2011).

The least prime number in the Beatty sequence $\mathcal{B}(\exp (\pi \sqrt{163}))$ is 3938061189611531159 which appears with $n=15$.

The Least Prime in an Arithmetic Progression

In 1944 Yuri Linnik showed that for every sufficiently large q and coprime a, there exists a constant expo such that the least prime p in the residue class $a \bmod q$ satisfies

$$
p \leq \text { const } \cdot q^{\operatorname{expo}}
$$

with some absolute constant const.

The so far best bound for the appearing exponent is expo ≤ 5 due to Triantafyllos Xylouris (2011)

The Least Prime in an Arithmetic Progression

In 1944 Yuri Linnik showed that for every sufficiently large q and coprime a, there exists a constant expo such that the least prime p in the residue class $a \bmod q$ satisfies

$$
p \leq \text { const } \cdot q^{\operatorname{expo}}
$$

with some absolute constant const.

The so far best bound for the appearing exponent is expo ≤ 5 due to Triantafyllos Xylouris (2011).

In the Best of All Worlds

The question dates back to Savardaman Chowla (on the left) who conjectured in 1934 that one may even take expo $=1+\epsilon$.

In 1937 Pál Turán proved that this is true i) for almost all q and,
ii) in general under the assumption of the generalized Riemann hypothesis.

Specialities about the Least Beatty Prime

What to expect for the least prime in a Beatty sequence?
For $2 \leq m \in \mathbb{N}$ let

Then

$$
\left\lfloor n \alpha_{m}\right\rfloor=4 n \quad \text { for } \quad n=1,2, \ldots, M:=\left\lfloor\frac{m}{\sqrt{2}}\right\rfloor
$$

Hence, these numbers are divisble by 4 so the least prime p in $\mathcal{B}\left(\alpha_{m}\right)$ does not appear among the first M elements.

There cannot be any bound similar to the one in the rational case!

Specialities about the Least Beatty Prime

What to expect for the least prime in a Beatty sequence?
For $2 \leq m \in \mathbb{N}$ let

$$
\alpha_{m}=4+\frac{\sqrt{2}}{m} .
$$

Then

$$
\left\lfloor n \alpha_{m}\right\rfloor=4 n \quad \text { for } \quad n=1,2, \ldots, M:=\left\lfloor\frac{m}{\sqrt{2}}\right\rfloor .
$$

Hence, these numbers are divisble by 4 so the least prime p in $\mathcal{B}\left(\alpha_{m}\right)$ does not appear among the first M elements.

There cannot be any bound similar to the one in the rational case!

Specialities about the Least Beatty Prime

What to expect for the least prime in a Beatty sequence?
For $2 \leq m \in \mathbb{N}$ let

$$
\alpha_{m}=4+\frac{\sqrt{2}}{m} .
$$

Then

$$
\left\lfloor n \alpha_{m}\right\rfloor=4 n \quad \text { for } \quad n=1,2, \ldots, M:=\left\lfloor\frac{m}{\sqrt{2}}\right\rfloor .
$$

Hence, these numbers are divisble by 4 so the least prime p in $\mathcal{B}\left(\alpha_{m}\right)$ does not appear among the first M elements.

There cannot be any bound similar to the one in the rational case!

A Theorem of Robert C. Vaughan (1977)

Let $\alpha, \beta \in \mathbb{R}$ and suppose that

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}}
$$

for coprime integers a and q. Define

$$
\chi(\theta)= \begin{cases}1 & \text { if }-\delta \leq\{\theta\}:=\theta-\lfloor\theta\rfloor<\delta, \\ 0 & \text { otherwise } .\end{cases}
$$

Then, for any fixed $\delta \in\left(0, \frac{1}{2}\right)$,

$$
\begin{aligned}
\sum_{n \leq N} \Lambda(n) \chi(n \alpha-\beta)= & 2 \delta \sum_{n \leq N} \Lambda(n)+O\left(\delta^{\frac{2}{5}} N^{\frac{4}{5}}\left(\frac{N q}{\delta}\right)^{\epsilon}+\right. \\
& \left.+\left(\log \frac{N q}{\delta}\right)^{8}\left(\frac{N}{q^{\frac{1}{2}}}+N^{\frac{3}{4}}+(\delta N q)^{\frac{1}{2}}\right)\right)
\end{aligned}
$$

Our Application

Here $\Lambda(n)$ counts prime powers $n=p^{k}$ with weight $\log p$; hence the prime number theorem gives

$$
\sum_{n \leq N} \Lambda(n) \sim \sum_{p \leq N} 1 \cdot \log N=\pi(N) \cdot \log N \sim N
$$

Thus, we get a similar formula for primes only!
Combining this and Vaughan's formula with $\delta=\alpha^{-1}$ we aim at finding

$$
\pi_{\mathcal{B}(\alpha)}(N) \cdot \log N=\frac{1}{\alpha} N \pm \text { error term }>0 .
$$

For this purpose we just need

Our Application

Here $\Lambda(n)$ counts prime powers $n=p^{k}$ with weight $\log p$; hence the prime number theorem gives

$$
\sum_{n \leq N} \Lambda(n) \sim \sum_{p \leq N} 1 \cdot \log N=\pi(N) \cdot \log N \sim N
$$

Thus, we get a similar formula for primes only!
Combining this and Vaughan's formula with $\delta=\alpha^{-1}$ we aim at finding

$$
\pi_{\mathcal{B}(\alpha)}(N) \cdot \log N=\frac{1}{\alpha} N \pm \text { error term }>0
$$

For this purpose we just need

$$
\frac{1}{\alpha} N>\mp \text { error term. }
$$

Continued Fractions

Choosing $N \approx q^{1+\epsilon}$ finally leads to the equivalent inequality

$$
1>\text { constant } \cdot \alpha^{\frac{1}{2}+\epsilon} q^{-\epsilon}
$$

which is fulfilled for sufficiently large q. If α is irrational, there exist indeed infinitely many reduced fractions $\frac{a}{q}$ with

For example, one may take the convergents $\frac{p_{n}}{q_{n}}$ to the continued fraction expansion of α which are bounded below by the Fibonacci numbers:

Continued Fractions

Choosing $N \approx q^{1+\epsilon}$ finally leads to the equivalent inequality

$$
1>\text { constant } \cdot \alpha^{\frac{1}{2}+\epsilon} q^{-\epsilon},
$$

which is fulfilled for sufficiently large q. If α is irrational, there exist indeed infinitely many reduced fractions $\frac{a}{q}$ with

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}} .
$$

For example, one may take the convergents $\frac{p_{n}}{q_{n}}$ to the continued fraction expansion of α which are bounded below by the Fibonacci numbers:

$$
q_{n} \geq F_{n+1} \approx \frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}+1}{2}\right)^{n+1}
$$

Our Result

This implies that there exists a positive integer n such that for every irrational $\alpha>1$ the least prime $p \in \mathcal{B}(\alpha)$ satisfies

$$
p \leq q_{n}^{1+\epsilon},
$$

where q_{n} denotes the denominator to the nth convergent of the continued fraction expansion of α.

This is quite similar to Linnik's classical theorem!

Our Result

This implies that
there exists a positive integer n such that for every irrational $\alpha>1$ the least prime $p \in \mathcal{B}(\alpha)$ satisfies

$$
p \leq q_{n}^{1+\epsilon},
$$

where q_{n} denotes the denominator to the nth convergent of the continued fraction expansion of α.

This is quite similar to Linnik's classical theorem!

Further Questions for Future Research

- Try to improve the estimate $p \leq q_{n}^{1+\epsilon}$. What can be said under assumption of the generalized Riemann hypothesis?
- What about the error term in the asymptotic formula for the number of primes in a Beatty sequence:

$$
\left|\pi_{\mathcal{B}(\alpha)}(N)-\frac{1}{\alpha} \pi(N)\right|
$$

Can you improve on Vinogradov's bounds?

- Is the (ternary) Goldbach conjecture true for primes from a Beatty sequence?

Formulate your own statement about primes in a Beatty sequence that your neighbour cannot answer! And prove it!!

Further Questions for Future Research

- Try to improve the estimate $p \leq q_{n}^{1+\epsilon}$. What can be said under assumption of the generalized Riemann hypothesis?
- What about the error term in the asymptotic formula for the number of primes in a Beatty sequence:

$$
\left|\pi_{\mathcal{B}(\alpha)}(N)-\frac{1}{\alpha} \pi(N)\right|<? ? ?
$$

Can you improve on Vinogradov's bounds?

- Is the (ternary) Goldbach conjecture true for primes from a Beatty sequence?

Formulate your own statement about primes in a Beatty sequence that your neighbour cannot answer! And prove it!!

Further Questions for Future Research

- Try to improve the estimate $p \leq q_{n}^{1+\epsilon}$. What can be said under assumption of the generalized Riemann hypothesis?
- What about the error term in the asymptotic formula for the number of primes in a Beatty sequence:

$$
\left|\pi_{\mathcal{B}(\alpha)}(N)-\frac{1}{\alpha} \pi(N)\right|<? ? ?
$$

Can you improve on Vinogradov's bounds?

- Is the (ternary) Goldbach conjecture true for primes from a Beatty sequence?
Formulate your own statement about primes in a Beatty sequence that your neighbour cannot answer! And prove it!!
¡ muchas gracias!

